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2 Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland

Received 30 April 2004
Published online 23 July 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. We derive the restricted optical-conductivity sum rule for a model with circulating orbital cur-
rents. It is shown that an unusual coupling of the vector potential to the interaction term of the model
Hamiltonian results in a non-standard form of the sum rule. As a consequence, the temperature dependence
of the restricted spectral weight could be compatible with existing experimental data for high-Tc cuprates
above the critical temperature Tc. We extend our results to the superconducting state, and comment on
the differences and analogies between these two symmetry-breaking phenomena.

PACS. 71.10.-w Theories and models of many-electron systems – 74.25.Gz Optical properties – 72.15.-v
Electronic conduction in metals and alloys – 74.72.-h Cuprate superconductors (high-Tc and insulating
parent compounds)

1 Introduction

Recent results extracted from measurements [1–5] of the
in-plane optical conductivity σ(ω) in Bi2Sr2CaCu2O8+δ

(BSCCO) place strong constraints on possible theories of
high-Tc superconductivity. Special attention has been de-
voted to the partial spectral weight extracted from the
optical conductivity in the direction α = x, y

Wα(ωm, T ) =
∫ ωm

−ωm

Re σαα(ω, T )dω, (1)

which is analyzed as a function of temperature T and
the cutoff frequency ωm, which varies between 1000 cm−1

(0.12 eV) and 20000 cm−1 (2.5 eV). According to this
definition, the weight W includes the condensate peak at
ω = 0 which develops in the superconducting (SC) state
below Tc. When ωm is of order of the plasma frequency,
ωP ∝ 104 cm−1, only intraband optical transitions con-
tribute to the measured spectral weight (1), and the so-
called restricted or partial sum rule may be applied [6–8],
which relates W to the average value of the diamagnetic
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term ταα (see Eq. (6) below),

Wα(ωP , T ) ≡ W (T ) =
πe2

V
〈ταα〉 =

πe2

V N

∑
k,σ

∂2εk

∂k2
α

nk,σ = −πe2

V

〈K〉
d

, (2)

where nk,σ is the momentum occupation number, V is
the unit-cell volume, N is the system size, d = 2 is
the dimension of the system, e is the electron charge,
and we set � = c = 1. The second line of equation (2)
is obtained under the assumption that the interaction
term of the Hamiltonian does not couple to the vector
potential A, and the final equality in equation (2) is
valid only for a nearest-neighbors tight-binding dispersion
εk = −2t(coskxa + cos kya) with the lattice constant a.
In this case the spectral weight is a direct measure of the
mean kinetic energy K of the system, and depends on tem-
perature and interaction strength. For a non-interacting
system nkσ = f(ξk), where ξk = εk − µ, µ is the chemical
potential, and f(x) is the Fermi function, so that W (T )
increases as the temperature decreases. In the presence of
a SC instability, the BCS theory predicts that the occupa-
tion number is modified below Tc and the partial spectral
weight is

W (T )
πe2a2

= − 1
2V N

∑
k

εk

[
1 − ξk

ESC
k

tanh
ESC

k

2T

]
(3)
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where ∆k = (∆0/2)(cos kxa − cos kya) is the d-wave
SC gap and ESC

k =
√

ξ2
k + ∆2

k is the quasiparticle dis-
persion in the SC state. The kinetic energy increases be-
low Tc because of particle-hole mixing, and as a conse-
quence W (T ) decreases. The restricted sum rule should
be contrasted [9–12] with the full f -sum rule

∫ ∞

−∞
Reσ(ω)dω =

πne2

m
, (4)

which relates the integral over all optical transitions
(ωm → ∞) to the total carrier density n and bare mass m,
and is independent of temperature and interactions. The
difference between the full and restricted sum rules is
made up by transitions between the orbitals described by
the low-energy effective tight-binding model and orbitals
with the energies above ωP , not included in this model.
As noted in reference [10], there is as yet no complete un-
derstanding of the relevant orbitals or energy range over
which the full sum rule is restored.

The experimental results and their implications [1,2,4]
for the restricted sum rule are the following. (i) Above
the critical temperature Tc, the partial spectral weight
W (T ) does not decrease when T decreases . Assuming that
the mean-field equation (3) is already valid in the pseu-
dogap state for T > Tc, so that W (T ) would decrease
as T decreases even above Tc, following reference [2] one
may conclude that the observed increase of W (T ) is in
contradiction with the opening of a pseudogap. (ii) Using
the value t = 0.25 eV, which is typical for cuprates, the
tight-binding estimate equation (2) for the relative ther-
mal variation of W (T ) between Tc and the room tempera-
ture Tr, with Tr/t � 0.1, gives (W (Tc)−W (Tr))/W (Tr) �
2 × 10−3. This variation appears to be at least one order
of magnitude smaller than the experimentally observed
change in W (T ) even for a large ωm = 104 cm−1. There
is even faster increase of W (T ) when smaller values of ωm

are used [4]. (iii) Below Tc the situation is not clear yet.
While early measurements in BSCCO samples show that
there is an even faster increase of W (T ) [1,2], contrary
to the prediction of the BCS theory, more recent results
in BSCCO [4] show that there is a flattening of W (T ) in
underdoped samples for ωm = 8000 cm−1, while a BCS
behavior below Tc is seen in the overdoped BSCCO and
in YBCO samples [3,5].

The possibility of a spectral-weight change below the
superconducting critical temperature has been analyzed,
for example, in references [13–15] in terms of the lowering
of the in-plane kinetic energy. In reference [15] the re-
duction of the kinetic energy at Tc has been attributed to
the transition from a phase-incoherent Cooper pair motion
in the pseudogap regime above Tc (see, e.g. review [16])
to a phase coherent motion at Tc, while in reference [14]
a model with a frequency dependent scattering rate was
used. More recently, the optical conductivity sum rule has
been analyzed for a model with electron coupled to a sin-
gle Einstein oscillator [17].

Here, in contrast to these papers, we focus primarily on
the temperature dependence of W (T ) above Tc and on the
issue of the compatibility between the pseudogap opening

and the absence of a lowering of the spectral weight. Our
purpose is to show that if the pseudogap originates from
a state with circulating orbital currents [18–23,25,26] the
opening of the pseudogap can be accompanied by the in-
crease of the partial spectral weight. For completeness we
extend these results also to the SC state. We find that
when a small SC gap opens in the presence of a large
DDW gap W (T ) remains almost constant below Tc.

2 Model

We consider the model with bond currents circulating
around elementary plaquettes of copper atoms which is
described by the effective Hamiltonian

H =
∑
k,σ

[
ξkc†kσckσ + iDkc†kσck+Qσ

]
, (5)

where c†kσ, ckσ are creation and annihilation operators
for a particle with momentum k and spin σ, Dk =
(D0/2)(coskxa − cos kya) is the gap, known as the DDW
gap [26], arising from the formation of the state with cir-
culating currents, and Q = (π/a, π/a) is the wave vec-
tor at which the density-wave ordering takes place. In
the present paper we do not derive the Hamiltonian (5)
by means of a Hartree-Fock analysis of a microscopic
model, as it has been done elsewhere [18–24]. These stud-
ies showed that Hubbard-like Hamiltonians with addi-
tional finite-range repulsion and superexchange interac-
tion can have a stable DDW saddle point. Thus we shall
parametrize phenomenologically the DDW order param-
eter and we will analyze within the low-energy effective
model (5) the effect of this symmetry breaking on the opti-
cal sum rule. It is worth noting that this approach has been
often adopted in the literature to address several issues re-
lated to transport properties in the DDW state [25–33].

The derivation of the restricted sum rule depends
crucially on the manner in which the vector potential
A enters the effective low-energy Hamiltonian (5). For
lattice models A is usually inserted in a coordinate
representation by means of the Peierls ansatz [9,10,8]
ci → cie

−ie
∫

A·dr, which modifies the fermionic oper-
ator at every site i. The dependence of the resulting
Hamiltonian on each component Aα of the gauge field
is H(Aα) ≈ H(0) − ∑

i

[
eAα(i)jP

α (i) − e2

2 A2
α(i)ταα(i)

]
,

where jP
α (i) is the α component of the particle current

density and ταα(i) is the αα component of the diamag-
netic contribution. Thus the total current density jα(i)
is jα(i) = −δH/δAα(i) = ejP

α − e2ταα(i)Aα(i). By eval-
uating 〈jα(ω)〉 in linear response [8,34], one obtains the
complex optical conductivity

σαα(ω) =
ie2

V (ω + i0)
Kαα(ω,0)

=
ie2

V (ω + i0)
(〈ταα〉 − Λαα(ω,0)) , (6)
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where Kαα is the electromagnetic response kernel and
the current-current correlation function Λαα(ω,q) is de-
fined as

Λαα(iΩn,q) =
1
N

∫ β

0

dτeiΩnτ 〈jP
α (τ,q)jP

α (0,−q)〉, (7)

with Ωn = 2πnT , using the standard analytic continu-
ation iΩn → ω + i0. Here jP

α (τ,q) is the Fourier trans-
form of the current density expressed in imaginary-time
representation. The Kramers-Kronig relations for the re-
sponse function Λαα(ω,0), yield from equation (6) the
optical sum rule (2) for the tight-binding model with
nearest-neighbors hopping. This derivation of the optical-
conductivity sum rule requires the knowledge of ταα,
which is easily obtained for a Hamiltonian expressed in
coordinate representation. For a Hamiltonian in the mo-
mentum representation, it is more straightforward to ap-
ply the sum rule in the form [34]∫ ωP

−ωP

Reσ(ω)dω =
πe2

V N
lim

qα→0

1
qα

〈[ρ(t,q), jP
α (t,−q)]〉, (8)

where ρ(t,q) is the Fourier transform of the particle den-
sity which satisfies the continuity equation

∂ρ(t,q)
∂t

+ iq · jP (t,q) = 0. (9)

We note that substitution in equation (8) of ρ(t,q) =∑
k,σ c†k−q/2,σck+q/2,σ and of the free-electron expression

jP (t,q) = (1/m)
∑

k,σ kc†k−q/2,σck+q/2,σ, corresponding
to εk = k2/2m, returns the full f -sum rule (4) (see [34]).

In most cases it is assumed that the interaction term
of the Hamiltonian involves only density-density coupling,
so that this is trivially gauge invariant and the Peierls
ansatz modifies only the first, “kinetic”, term of the
Hamiltonian (5). For models with nearest-neighbors hop-
ping, ταα is then related directly to the kinetic energy,
〈ταα〉 = −〈K〉/d and one obtains the usual version of the
sum rule given by equation (2). However, this assump-
tion is invalid when for example “occupation modulated”
hopping terms are considered [13]. In particular, if one
assumes that the low-energy physics of the system can
be described by the effective Hamiltonian (5), then any
distinction in the total energy between a kinetic and a po-
tential part is somehow ambiguous. Thus, by transforming
the Hamiltonian (5) to the coordinate space, one finds that
ταα contains an extra term for D0 �= 0,

〈ταα〉 = − 1
2N

∑
kσ

εk〈c†kσckσ〉 + iDk〈c†kσck+Qσ〉. (10)

This result is consistent with the derivation (8) of the sum
rule, when one uses the particle current operator compat-
ible with the conservation law (9) and with the equations
of motion for the operators c and c†, [27,29,30,33]

jP (t,q) =
∑
k,σ

[
vF
k c†k−q/2σck+q/2σ

−ivD
k c†k−q/2σck+Q+q/2σ

]
, (11)

where vF
k = ∂εk/∂k and vD

k = −∂Dk/∂k. The first term
of the previous expression relates as usual the particle cur-
rent to the band velocity vF

k . The second term, which only
appears for non-vanishing D0, takes into account the con-
tribution of the orbital currents to the electrical conduc-
tivity, arising when the DDW order is established. Substi-
tution of equation (11) in (8) yields

W (T )
πe2a2

= − 1
V N

∑
RBZ

Ek[f(ξ+,k) − f(ξ−,k)], (12)

where Ek =
√

ε2
k + D2

k, and ξ±,k = −µ ± Ek repre-
sent the two excitation branches associated with the for-
mation of DDW order which breaks translation symme-
try. The sum is taken over the reduced Brillouin zone
(RBZ). Equation (12) was derived using the fact that
∂αvF

k = 2ta2 cos kαa (and ∂x,yvD
k = ±(D0/2)a2 cos kx,ya),

and it reduces to equation (2) for D0 = 0.
To extend this result to a state with both DDW and SC

order present, we add to the Hamiltonian (5) an additional
d-wave mean-field pairing term Hp =

∑
k[∆∗

kc−k↓ck↑ +
h.c.], where ∆k = (∆0/2)(coskxa − cos kya). As a conse-
quence, the spectral weight in the DDW+SC state reads

W (T )
πe2a2

=
1

2V N

∑
RBZ

E

[
ξ+

E+
tanh

E+

2T
− ξ−

E−
tanh

E−
2T

]
,

(13)
where E±,k =

√
ξ2
±,k + ∆2

k is the quasiparticle dispersion
in the presence of pairing, and the explicit dependence on
k has been omitted. Numerical calculation of the spec-
tral weight defined by equations (12) and (13) shows that
below the temperature TDDW, at which the DDW state is
formed, the spectral weight W (T ) increases as the temper-
ature decreases and the DDW gap opens. As stated above,
this increase originates from the second term of Hamilto-
nian (5) which effectively enhances the low-frequency con-
ductivity, as already observed in reference [33]. When the
temperature is lowered further and the SC gap opens at
a temperature Tc < TDDW, the spectral-weight increase is
reduced with respect to the DDW state only.

A more quantitative comparison with experimental
data requires the dependences of the gaps D0 and ∆0 on
temperature T and doping δ. This issue has been inves-
tigated within various microscopic models by several au-
thors (see for example [23,24]). Here, following the lines
of references [25,27,32], and consistently with our effective
Hamiltonian (5), we adopt a mean-field dependence for the
DDW gap. We assume [25] that D0 opens below a doping-
dependent temperature TDDW(δ) = 40[1 − (δ/δ0)4] meV,
where δ is the doping with respect to half filling, and
δ0 = 0.2 is the critical doping for the DDW formation. We
adopt for the temperature dependence of D0 the mean-
field relation D0(T, δ) = cTDDW(δ)g(T/TDDW(δ)), where
g(x) = (1 − x4/3)

√
1 − x4, and c is a constant which is

used as a fitting parameter. To describe the SC transi-
tion we solve self-consistently the BCS equations for ∆0

and µ as functions of temperature. We use an analogous
set of parameters as in reference [25] to estimate the
thermal variation of W (T ) in BSCCO. We focus on an
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Fig. 1. W (T )/t in units of e2πa2/V [Eq. (12)] for an under-
doped (δ = 0.13) and an optimally doped (δ = 0.16) system.
Below Tc, marked by the arrows, the lower line for each doping
represents the spectral weight in the DDW+SC state, equa-
tion (13). We note that for δ = 0.13 the decrease of W (T )
below Tc is almost negligible. Also shown for comparison (dash-
dotted line) is W (T )/t in the normal state without DDW for-
mation at δ = 0.13 [Eq. (2)]. Inset: spectral weight plotted as
function of (T/t)2.

underdoped (δ = 0.13) and an optimally doped (δ = 0.16)
compound [1,2]. The results are presented in Figure 1,
where the temperature dependence of W (T ) for the tight-
binding metal is shown for comparison. Below TDDW the
weight W (T ) increases proportionally to D0(T ), so that
the overall increase of W (T ) with respect to W (TDDW)
is more pronounced in the underdoped case (δ = 0.13),
where D0(0) is larger. In reference [1] it has been ob-
served that W (T ) shows a T 2 dependence above the crit-
ical temperature, as expected in the tight-binding model
equation (2), but with a much larger slope. To make a
comparison with the result of equation (12), in the in-
set of Figure 1 we plot W (T ) as a function of T 2. One
can see that below TDDW the T 2 temperature dependence
of W (T ) is still recovered over a wide range of tempera-
ture, and with a slope in good agreement with the exper-
imental observation. Significant deviations are observed
approaching Tc and below, where our mean-field approach
does not reproduce the anomalous increasing of W (T ) ob-
served in BSCCO in early experiments [1]. Observe how-
ever that because at these dopings ∆0 
 D0, W (T ) is
not explicitly decreasing below Tc, as expected in an or-
dinary metal-SC transition, but keeps almost constant re-
sembling more recent experimental data [4]. Finally, we
find that the relative variations of W (T ) below Tr = 0.1t
is of order W (0)/W (Tr) � 3 × 10−2, as observed experi-
mentally [1,2,4], and is much larger than expected in the
simple tight-binding model.

The previous analysis can be extended to the case
where an additional next-nearest neighbor hopping term t′
is added to the bare band dispersion ξk in equation (5).
Even though both equation (10) and equation (12) are

formally modified, the qualitative behavior of the reduced
spectral weight is the same, with an increasing of W (T )
below the temperature for DDW formation. However, as
suggested also in reference [31], it is likely that the analy-
sis of the DDW state should be carried out with a value of
t′ much smaller then suggested by ARPES experiments,
leading to small quantitative corrections to the previous
results.

3 Discussion

A crucial step in the presented derivation of the sum rule
is to use the current operator (11) that was considered
before in references [27,29,30,33]. A different current op-
erator was used instead in reference [32], where it was sug-
gested that the gauge field should couple via the Peierls
ansatz to the quasiparticle fermionic operators that di-
agonalize the Hamiltonian (5). As far as the restricted
sum rule is concerned, this corresponds to the replace-
ment of the bare dispersion law εk in equation (2) with
the sum of the contributions from the new bands ξ±(k),
and it would produce an extra term (2/NV )

∑
RBZ(vF

α D+
vD

α ε)2[f(ξ+)−f(ξ−)]/E3 that would be added to the spec-
tral weight (12). Its contribution to W (T ) is negative and
of order t

√
t/D0, as one can check numerically and es-

timate analytically at low doping. The resulting W (T ) is
then found to decrease below TDDW, in contrast to the ex-
perimental observation and the result obtained with equa-
tion (12). Analogously, below Tc the ansatz of coupling the
gauge field to the quasiparticle DDW operators does not
reproduced the expression for the superfluid density ρs(T )
proposed in references [27,28], which is derived trough the
current operator (11).

The previous discussion shows that there is not yet an
agreement in the literature about the proper treatment of
the transport properties in the DDW state. However, it is
worth noting that the form of the current operator and of
the diamagnetic term used to evaluate the electromagnetic
response kernel Kαα(q) in the DDW state are intimately
related. If a Gauge invariant approximation is used, the
response kernel satisfies Kαα(ω = 0,q → 0) = 0 above the
SC critical temperature Tc [8,35]. This means for example
that the diamagnetic contribution 〈ταα〉 to the superfluid
density ρs(T ) cancels the contribution Λαα(iΩn = 0,q →
0) providing the vanishing of ρs(T ) for T > Tc. Within
the low-energy model (5) this cancellation holds only if
the diamagnetic term (10) is considered along with the
current operator (11), derived from the requirement that
the continuity equation (9) be satisfied.The same result
does not hold by using the mean-field correlation functions
defined in reference [32].

A different approach, which was not investigated here,
consists of deriving a proper gauge-invariant approxima-
tion for the response kernel Kαα by starting from an un-
derlying microscopic model that provides the basis for
the Hamiltonian (5) [18–24] and including the vertex cor-
rections to the mean-field correlation functions. In the
case of SC symmetry breaking, one knows that vertex
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corrections are singular for (ω,q) → 0, satisfying the dis-
persion relations of the collective (phase) mode [34,35].
In the DDW case, where the phase mode is locked by
the commensurability, vertex corrections are always finite
and at zero frequency are related by Ward identities to
the k derivative of the self-energy associated with the
DDW state, i.e. to the term vD

k which appears in the defi-
nition (11) of the current. As a consequence, as observed in
reference [33], the d.c. conductivity, σ(0) calculated with
the current operator (11) coincides with the exact results
for a general, many-body formulation with nonzero ver-
tex corrections. This observation suggests that there ex-
ists an energy scale below which the approach followed
here, where the sum rules (12) for T > Tc and (13) for
T < Tc were derived directly from the effective Hamilto-
nian (5), describes properly the system behavior. However,
since there is no straightforward extension of the previous
arguments for σ(ω �= 0), it is difficult to determine the
value of ωm at which the restoration of the more general
sum rules (2) and (4) should be observed in the original
microscopic model. In particular, if this cut-off energy re-
sulted to be quite lower than the bare plasma edge, the
comparison with the experimental data presented before
should be reconsidered and referred to the data collected
up to frequencies lower than 104 cm−1. As a consequence,
the restricted sum rule derived here for the mean-field
Hamiltonian (5) has yet to be understood from a more
general point of view, within a direct analysis of a micro-
scopic Hubbard-type model with some short-range inter-
action that may result in the formation of DDW state. As
mentioned above, this investigation is rather complicated
and cannot be done within the framework considered here,
so we reserve it for a future work.

To conclude, we have demonstrated within an effective
model that circulating currents can act to modify the re-
stricted optical sum rule in a such way that this acquires
the same temperature dependence as that observed in ex-
periments above Tc: the opening of the corresponding gap
produces an increase in the spectral weight above Tc. Be-
low the SC critical temperature the spectral weight keeps
almost constant, as observed recently in reference [4], but
in contrast with other measurements [1]. Since the experi-
mental situation about the behavior of the spectral weight
in the SC state is not settled, more data are certainly re-
quired to definitively establish the possible compatibility
between our findings and the experiments. As far as our
theoretical approach is concerned, we discussed that the
exact range of validity of this result should still be clari-
fied. Nonetheless, the analysis of the reduced low-energy
model suggests the possibility that the same kind of de-
viations from the conventional form of the restricted sum
rule could be expected in more sophisticated microscopic
models (see e.g. [22]).

We are grateful to N. Andrenacci, V.P. Gusynin, C.
de Morais Smith, B. Normand, and P. Prelovšek for helpful
discussions. This work was supported by the research projects
2000-067853.02/1 and 620-62868.00 of the Swiss NSF.
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